organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-N'-(4-Bromobenzylidene)-2-(8-quinolyloxy)acetohydrazide monohydrate

Jun Tan

College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China Correspondence e-mail: catalyst007@126.com

Received 22 May 2009; accepted 28 May 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.011 Å; R factor = 0.070; wR factor = 0.178; data-to-parameter ratio = 13.2.

In the title compound, $C_{18}H_{14}BrN_3O_2 \cdot H_2O$, the dihedral angle between the mean planes of the benzene ring and the quinoline ring system is 34.2 (3)°. In the crystal, the constituents are linked into chains by $O-H \cdots O$, $N-H \cdots O$ and $O-H \cdots N$ hydrogen bonds.

Related literature

For a related structure, see: Tan (2009). For background to the coordination chemistry of 8-hydroxyquinoline and its derivatives, see: Chen & Shi (1998); Mona & Wageih (2002). For reference structural data, see: Allen *et al.* (1987).

Å

Experimental

Crystal data	
C ₁₈ H ₁₄ BrN ₃ O ₂ ·H ₂ O	a = 21.95 (2) A
$M_r = 402.25$	b = 11.841 (8)
Monoclinic, C2/c	c = 13.057 (9)

$\beta = 93.70 \ (2)^{\circ}$
$V = 3387 (4) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation

Data collection

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.070$ 227 parameters $wR(F^2) = 0.178$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.52$ e Å⁻³2988 reflections $\Delta \rho_{min} = -0.75$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O3$ $O3-H19\cdots N1$ $O3-H20\cdots O2^{i}$	0.86 0.85 0.85	2.04 1.97 2.11	2.860 (8) 2.806 (8) 2.783 (7)	160 170 136

 $\mu = 2.45 \text{ mm}^{-1}$ T = 295 K

 $R_{\rm int} = 0.141$

 $0.20 \times 0.18 \times 0.15~\mathrm{mm}$

8378 measured reflections

2988 independent reflections 1334 reflections with $I > 2\sigma(I)$

Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Natural Science Foundation of Zhejiang Province for Distinguished Young Students (No. 2008R40G2190024) and the Scientific Research Fund of the Zhejiang Provincial Education Department (No. Y200803569).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2981).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161-174.
- Mona, M. M. & Wageih, G. H. (2002). J. Coord. Chem. 55, 439-457.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Tan, J. (2009). Acta Cryst. E65, 0651.

supplementary materials

Acta Cryst. (2009). E65, o1474 [doi:10.1107/S1600536809020418]

(E)-N'-(4-Bromobenzylidene)-2-(8-quinolyloxy)acetohydrazide monohydrate

J. Tan

Comment

8-Hydroxyquinoline and its derivatives constitute well known ligands in coordination chemistry (Chen & Shi, 1998; Mona & Wageih, 2002). In our search for new extractants of metal ions and biologically active materials, the title compound, (I), has been synthesized. We report here its crystal structure.

All bond lengths and angles are normal (Allen *et al.*, 1987), and are comparable to those in the related compound (*E*)-N'-[1-(4-Hydroxyphenyl)ethylidene]-2-(quinolin-8- yloxy)acetohydrazide methanol solvate (Tan, 2009). The mean planes of the benzene ring and the quinoline rings make a dihedral angle of 34.2 (3)°. In the crystal structure, the C₁₈H₁₄BrN₃O₂ molecules and the water molecules are linked into chains by O—H…O, N—H…O and O—H…N hydrogen bonds.

Experimental

2-(quinolin-8-yloxy)acetohydrazide (2.18 g, 10 mmol), 4-bromobenzaldehyde (1.85 g, 10 mmol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask, and refluxed for 5 h. After cooling to room temperature, the mixture was filtered. Colourless blocks of (I) were obtained by slow evaporation of a acetone-methanol (1:2, v/v) solution over a period of 3 d.

Refinement

The H atoms were initially located in a difference Fourier map, then relocated in idealised positions (C—H = 0.93–0.97Å O—H = 0.85 Å and N—H = 0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.

Fig. 2. The structure of the chains formed *via* hydrogen bonds, H atoms have been omitted for clarity. The dashed lines indicate hydrogen bonds.

(E)-N'-(4-Bromobenzylidene)-2-(8-quinolyloxy)acetohydrazide monohydrate

Crystal data

$C_{18}H_{14}BrN_3O_2 \cdot H_2O$	$F_{000} = 1632$
$M_r = 402.25$	$D_{\rm x} = 1.578 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1037 reflections
a = 21.95 (2) Å	$\theta = 2.5 - 19.7^{\circ}$
b = 11.841 (8) Å	$\mu = 2.45 \text{ mm}^{-1}$
c = 13.057 (9) Å	T = 295 K
$\beta = 93.70 \ (2)^{\circ}$	Block, colourless
$V = 3387 (4) \text{ Å}^3$	$0.20\times0.18\times0.15~mm$
Z = 8	

Data collection

Siemens SMART CCD area-detector diffractometer	2988 independent reflections
Radiation source: fine-focus sealed tube	1334 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.141$
T = 295 K	$\theta_{\text{max}} = 25.1^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Siemens, 1996)	$h = -15 \rightarrow 26$
$T_{\min} = 0.640, \ T_{\max} = 0.710$	$k = -14 \rightarrow 13$
8378 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.070$	$w = 1/[\sigma^2(F_o^2) + (0.0524P)^2 + 0.013P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.178$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.52 \text{ e } \text{\AA}^{-3}$
2988 reflections	$\Delta \rho_{min} = -0.75 \text{ e } \text{\AA}^{-3}$
227 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0009 (2)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y Br1 0.90959 (4) 0.0744(4)-0.09454(8)-0.24581(7)01 0.6370(2) 0.0076 (4) 0.4059 (4) 0.0572 (15) O2 0.0720 (18) 0.7206(2) -0.2340(5)0.3387 (4) O3 0.6745(2)0.1677 (4) 0.2304(4)0.0709(17)H19 0.106* 0.6501 0.1798 0.2773 H20 0.7041 0.2133 0.2416 0.106* N1 0.5826(3)0.2041 (6) 0.3665(5)0.0569 (18) N2 0.7139 (2) -0.0597(5)0.2679 (5) 0.0512 (17) H2 0.7015 0.061* 0.0089 0.2724 N3 0.7481(2)-0.0944(5)0.1878 (4) 0.0498 (16) C1 0.5556 (4) 0.3013 (8) 0.3491 (7) 0.071 (2) H10.5638 0.3395 0.2893 0.085* C2 0.5152 (4) 0.3521 (7) 0.4142 (7) 0.071 (3) H2A 0.4977 0.4219 0.3980 0.085* C3 0.2977 (8) 0.5024(3)0.5002(7) 0.069(3)H3 0.4749 0.3292 0.5432 0.083* 0.5300 (3) C4 0.1940 (6) 0.5264 (6) 0.0469 (19) C5 0.5217 (4) 0.1349(7) 0.6158 (6) 0.060(2)Н5 0.4951 0.1631 0.6621 0.072* C6 0.0379 (8) 0.5512 (4) 0.6369(7) 0.067(2) H6 0.5448 0.0005 0.6979 0.081* C7 0.5913 (3) -0.0086(7)0.5699 (6) 0.060(2)H7 0.6115 -0.07600.5860 0.072* C8 0.0465 (6) 0.4799 (6) 0.6007(3)0.0462 (19) C9 0.5708 (3) 0.1502 (6) 0.4560(6) 0.0459 (19) C10 0.4229 (6) -0.1020(6)0.054 (2) 0.6614 (3) H10A 0.6283 -0.15560.4271 0.065* H10B 0.6855 -0.10320.4879 0.065* C11 0.7011 (3) -0.1375 (7) 0.3383 (6) 0.053 (2) C12 0.7666 (3) -0.0121(7)0.1327 (6) 0.050(2)H12 0.7585 0.0621 0.1509 0.060* C13 0.8002(3)-0.0349(7)0.0416 (5) 0.0441 (19) C14 0.8235 (3) 0.0555 (6) -0.0099(6)0.051 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H14	0.8178	0.1285	0.0139	0.061*
C15	0.8551 (3)	0.0384 (7)	-0.0965 (6)	0.058 (2)
H15	0.8714	0.0993	-0.1304	0.069*
C16	0.8623 (3)	-0.0703 (7)	-0.1320 (6)	0.050 (2)
C17	0.8391 (3)	-0.1611 (7)	-0.0827 (6)	0.050 (2)
H17	0.8437	-0.2340	-0.1073	0.060*
C18	0.8085 (3)	-0.1412 (6)	0.0047 (5)	0.0459 (19)
H18	0.7932	-0.2023	0.0397	0.055*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0833 (7)	0.0776 (7)	0.0666 (6)	0.0062 (5)	0.0376 (5)	0.0007 (6)
01	0.075 (4)	0.046 (3)	0.055 (3)	0.009 (3)	0.036 (3)	0.003 (3)
02	0.096 (4)	0.037 (3)	0.089 (5)	0.008 (3)	0.056 (4)	0.004 (3)
03	0.078 (4)	0.055 (4)	0.086 (4)	-0.008 (3)	0.050 (3)	-0.008 (3)
N1	0.060 (4)	0.048 (4)	0.066 (5)	0.004 (3)	0.025 (4)	-0.004 (4)
N2	0.053 (4)	0.041 (4)	0.063 (4)	0.001 (3)	0.033 (3)	-0.002 (3)
N3	0.053 (4)	0.045 (4)	0.055 (4)	-0.001 (3)	0.031 (3)	-0.007 (4)
C1	0.081 (6)	0.069 (7)	0.066 (6)	0.005 (5)	0.027 (5)	0.015 (5)
C2	0.076 (6)	0.059 (6)	0.080(7)	0.027 (5)	0.023 (5)	0.004 (5)
C3	0.056 (6)	0.077 (7)	0.077 (7)	0.004 (5)	0.027 (5)	-0.014 (6)
C4	0.047 (5)	0.046 (5)	0.050 (5)	-0.001 (4)	0.024 (4)	-0.002 (4)
C5	0.069 (6)	0.064 (6)	0.051 (5)	-0.005 (5)	0.028 (4)	-0.011 (5)
C6	0.069 (6)	0.071 (7)	0.066 (6)	-0.004 (5)	0.037 (5)	0.007 (5)
C7	0.063 (5)	0.053 (5)	0.068 (6)	0.003 (4)	0.036 (5)	0.005 (5)
C8	0.053 (5)	0.044 (5)	0.045 (5)	-0.003 (4)	0.024 (4)	-0.004 (4)
C9	0.045 (5)	0.046 (5)	0.049 (5)	-0.003 (4)	0.016 (4)	-0.004 (4)
C10	0.064 (5)	0.044 (5)	0.058 (5)	-0.001 (4)	0.033 (4)	0.003 (4)
C11	0.053 (5)	0.046 (5)	0.062 (5)	-0.012 (4)	0.021 (4)	-0.008 (5)
C12	0.049 (5)	0.044 (5)	0.061 (5)	0.001 (4)	0.025 (4)	-0.004 (4)
C13	0.038 (4)	0.050 (5)	0.047 (5)	0.000 (4)	0.019 (4)	0.003 (4)
C14	0.052 (5)	0.040 (5)	0.063 (5)	0.002 (4)	0.023 (4)	-0.006 (4)
C15	0.055 (5)	0.049 (5)	0.072 (6)	0.000 (4)	0.027 (4)	0.015 (5)
C16	0.044 (4)	0.052 (6)	0.058 (5)	0.008 (4)	0.016 (4)	0.007 (4)
C17	0.054 (5)	0.049 (5)	0.047 (5)	0.003 (4)	0.013 (4)	-0.009 (4)
C18	0.053 (5)	0.041 (5)	0.045 (5)	-0.005 (4)	0.019 (4)	0.001 (4)

Geometric parameters (Å, °)

1.889 (7)	С5—Н5	0.9300
1.371 (7)	C6—C7	1.394 (9)
1.417 (8)	С6—Н6	0.9300
1.220 (8)	С7—С8	1.371 (10)
0.8500	С7—Н7	0.9300
0.8500	C8—C9	1.417 (10)
1.309 (9)	C10-C11	1.509 (9)
1.370 (9)	C10—H10A	0.9700
1.344 (9)	C10—H10B	0.9700
	1.889 (7) 1.371 (7) 1.417 (8) 1.220 (8) 0.8500 0.8500 1.309 (9) 1.370 (9) 1.344 (9)	1.889 (7) C5—H5 1.371 (7) C6—C7 1.417 (8) C6—H6 1.220 (8) C7—C8 0.8500 C7—H7 0.8500 C8—C9 1.309 (9) C10—C11 1.370 (9) C10—H10A 1.344 (9) C10—H10B

N2—N3	1.389 (7)	C12—C13	1.464 (9)
N2—H2	0.8600	C12—H12	0.9300
N3—C12	1.292 (8)	C13—C18	1.364 (9)
C1—C2	1.402 (11)	C13—C14	1.381 (9)
C1—H1	0.9300	C14—C15	1.379 (9)
C2—C3	1.341 (11)	C14—H14	0.9300
C2—H2A	0.9300	C15—C16	1.380 (10)
C3—C4	1.402 (10)	C15—H15	0.9300
С3—Н3	0.9300	C16—C17	1.368 (10)
C4—C5	1.383 (10)	C17—C18	1.380 (9)
C4—C9	1.422 (9)	C17—H17	0.9300
C5—C6	1.338 (10)	C18—H18	0.9300
C8—O1—C10	115.4 (5)	N1—C9—C4	122.9 (7)
H19—O3—H20	106.1	C8—C9—C4	118.3 (7)
C1—N1—C9	116.7 (7)	O1—C10—C11	111.8 (6)
C11—N2—N3	117.4 (6)	O1-C10-H10A	109.3
C11—N2—H2	121.3	C11—C10—H10A	109.3
N3—N2—H2	121.3	O1-C10-H10B	109.3
C12—N3—N2	113.6 (6)	C11—C10—H10B	109.3
N1—C1—C2	124.7 (8)	H10A—C10—H10B	107.9
N1—C1—H1	117.7	O2—C11—N2	123.8 (7)
C2—C1—H1	117.7	O2-C11-C10	118.4 (7)
C3—C2—C1	118.5 (8)	N2-C11-C10	117.8 (7)
C3—C2—H2A	120.8	N3—C12—C13	120.4 (7)
C1—C2—H2A	120.8	N3—C12—H12	119.8
C2—C3—C4	121.0 (8)	C13—C12—H12	119.8
С2—С3—Н3	119.5	C18—C13—C14	118.7 (6)
С4—С3—Н3	119.5	C18—C13—C12	122.9 (7)
C5—C4—C3	124.8 (7)	C14—C13—C12	118.3 (7)
C5—C4—C9	119.0 (7)	C15—C14—C13	120.5 (7)
C3—C4—C9	116.2 (7)	C15—C14—H14	119.7
C6—C5—C4	121.3 (7)	C13—C14—H14	119.7
С6—С5—Н5	119.3	C14—C15—C16	119.1 (7)
С4—С5—Н5	119.3	C14—C15—H15	120.4
C5—C6—C7	121.7 (8)	С16—С15—Н15	120.4
С5—С6—Н6	119.1	C17—C16—C15	121.4 (7)
С7—С6—Н6	119.1	C17—C16—Br1	119.4 (6)
C8—C7—C6	119.1 (7)	C15—C16—Br1	119.1 (6)
С8—С7—Н7	120.5	C16—C17—C18	118.1 (7)
С6—С7—Н7	120.5	С16—С17—Н17	121.0
C7—C8—O1	124.8 (7)	С18—С17—Н17	121.0
С7—С8—С9	120.6 (7)	C13—C18—C17	122.2 (7)
O1—C8—C9	114.7 (6)	C13—C18—H18	118.9
N1—C9—C8	118.7 (6)	C17—C18—H18	118.9
C11—N2—N3—C12	-169.8 (7)	C3—C4—C9—N1	-0.8 (11)
C9—N1—C1—C2	-1.2 (13)	C5—C4—C9—C8	0.8 (11)
N1—C1—C2—C3	-0.6 (14)	C3—C4—C9—C8	178.9 (7)
C1—C2—C3—C4	1.8 (14)	C8—O1—C10—C11	-179.5 (6)

supplementary materials

C2—C3—C4—C5	176.9 (8)	N3—N2—C11—O2	4.4 (12)
C2—C3—C4—C9	-1.1 (12)	N3—N2—C11—C10	-177.2 (6)
C3—C4—C5—C6	-177.9 (8)	O1—C10—C11—O2	-173.5 (7)
C9—C4—C5—C6	0.1 (12)	O1-C10-C11-N2	7.9 (10)
C4—C5—C6—C7	-0.4 (13)	N2—N3—C12—C13	-176.4 (6)
C5—C6—C7—C8	-0.1 (13)	N3-C12-C13-C18	6.5 (11)
C6—C7—C8—O1	-177.3 (7)	N3-C12-C13-C14	-174.6 (7)
C6—C7—C8—C9	1.0 (12)	C18-C13-C14-C15	-0.6 (11)
C10—O1—C8—C7	5.5 (11)	C12-C13-C14-C15	-179.6 (7)
C10—O1—C8—C9	-172.9 (6)	C13-C14-C15-C16	1.1 (12)
C1—N1—C9—C8	-177.8 (7)	C14-C15-C16-C17	-0.5 (11)
C1—N1—C9—C4	1.9 (11)	C14-C15-C16-Br1	-176.4 (6)
C7—C8—C9—N1	178.3 (7)	C15—C16—C17—C18	-0.6 (11)
O1-C8-C9-N1	-3.2 (10)	Br1-C16-C17-C18	175.3 (5)
C7—C8—C9—C4	-1.4 (11)	C14-C13-C18-C17	-0.6 (11)
O1—C8—C9—C4	177.1 (7)	C12-C13-C18-C17	178.4 (7)
C5-C4-C9-N1	-178.9 (7)	C16-C17-C18-C13	1.1 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2…O3	0.86	2.04	2.860 (8)	160
O3—H19…N1	0.85	1.97	2.806 (8)	170
O3—H20···O2 ⁱ	0.85	2.11	2.783 (7)	136
Symmetry codes: (i) $-x+3/2$, $y+1/2$, $-z+1/2$.				

sup-6

Fig. 2

